GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) I– Semester

Course Title: Basic Polymer Chemistry

(Course Code: 4312301)

Diploma programme in which this course is offered	Semester in which offered		
Plastics Engineering (Sandwich Pattern)	First		

1. RATIONALE

The plastic industry occupies a prominent position in the development of both industrially advanced and developing countries. Plastics are now becoming basic engineering material to replace steel because of their unique properties and low cost. Acquaintance of Basic polymer chemistry is essential to take up career in plastic technology. Students in this course will be skilled to use concepts of polymer chemistry used for engineering application in the field of plastics.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Use concepts of organic chemistry in the field of Plastic Engineering

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Interpret the carbon structure present in the polymer.
- b) Use relevant monomers and its functionality for different applications.
- c) Interpret polymer properties based on geometric structures.
- d) Use suitable polymer for different applications.
- e) Select suitable polymerization technique for environmental sustainability.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Crec			Total Credits	Examination Scheme					
(In Hours)		s)	(L+T/2+P/2)	Theory Marks		Practical Marks		Total	
L	Т	Р	С	CA ESE		CA	ESE	Marks	
3	-	2	4	30*	70	25	25	150	

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. *These PrOs need to be attained to achieve the Cos.*

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Identify different configurations of carbon.	I	02
2	Identify simple organic compounds containing C, H, O, N, S & Cl with Melting point & boiling point.	I	04
3	Undertake tests to identify monomers (Hydrocarbons, chlorinated monomers)	П	04
4	Undertake tests to identify monomers with several double bonds	П	02
5	Undertake solubility test for identification of Polymers.		04
6	Use flame test for identification of polymers.		02
7	Separate and Purify the given polymer.		04
8	Use experimental set-up for free radical polymerization.	IV	02
9	Examine Condensation Polymerization Reaction used in the creation of Nylon 6-10	IV	04
	Total		28

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some* **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Prepare of experimental setup	20
2	Operate the equipment setup or circuit	20
3	Follow safe practices measures	10
4	Record observations correctly	20
5	Interpret the result and conclude	30
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	Bunsen burner 85mm base, 142mm height, Aluminum, /Brass/Steel	2,6,7,8
2	Purification set	7

S. No.	Equipment Name with Broad Specifications	PrO. No.
3	Test tube (18 x 150 mm) Glass	2,5,6
4	Stirring rods as per requirement	2,5
5	Beaker (50 mL, 250 mL) Glass	2,5,6,7
6	Solvents and Chemicals as per requirement	1,3,5,7
7	Safety equipment (gloves, goggles etc) as per requirement	3,6,7,8,9
8	Ring stand and ring with wire gauze	5,6,8
9	Thermometer as per requirement	6,7,8,9
10	Capillary tube as per requirement	2,7

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this course competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs) (4 to 6 UOs at different levels)	Topics and Sub-topics
Unit-I	 Explain principles of organic chemistry 	1.1 Organic chemistry: definition and scope
Organic Chemistry	 1b. Make use of periodic table and element structure 1c. Identify bond types & 	 Periodic table and element structure (C, H, O, S, Cl, N, Si) Types of Bond, Bond angle, Bond length, Bond energy, Electro
	different organic compounds. 1d. Compare various carbon configuration	 negativity, Polar Bonds, Bond Polarity & Dipole moment 1.4. Configuration of carbon - SP-I, SP-II, and SP-III.

		1
	Unit Outcomes (UOs)	
Unit	(4 to 6 UOs at different	Topics and Sub-topics
	levels)	
	1e. Classify hydro carbons.	1.5. Classifications of Hydro-Carbons.
	1f. Identify various	1.6. Functional groups – structure and
	functional groups	characteristics
	1g. Construct nomenclature	1.7. Nomenclatures of Organic Compounds
	of organic compounds	(IUPAC).
Unit-II	2a Explain monomers	2.1. Monomers – Definition, use,
	2b Describe functionality of	functionality, types
Monomers	monomer	2.2 Manufacturing of Monomers -
	2c Classify monomers	Ethylene, Vinyl and Styrene
	2d Manufacturing of given	2.3. Purification of Monomer
	monomers 2e Describe the purification	2.4 Dispose monomer waste safely.
	process of given	
	monomers.	
	2f Justify the selection of	
	manufacturing process	
	for a monomer.	
	2g Dispose monomer	
	waste safely.	
Unit-III	3a Explain polymers	3.1. Polymer: Definition and use
	3b Describe polymerization	3.2. Polymerization and degree of
Polymers	and degree of	polymerization.
FOIVITIETS	polymerization	3.3. Effect of functionality on Polymer
	3c Explain effect of	Structure.
	functionality on polymer	3.4. Polymer Structure- Linear, branched,
	structure	cross-linked, Random, alternating,
	3d Compare polymer	block, graft and Stereo regular
	structure of given polymers	polymers
	3e Classify the given	3.5. Classification of Polymer based on:
	Polymers	Structure, Repeating unit,
	3f Dispose polymer waste	Applications, Source, Nature and
	safely.	Processing
115:+ 11/	4a Describe the steps in	3.5 Dispose polymer waste safely.4.1. Polymerization steps – Initiation,
Unit-IV	polymerization	Propagation and Termination
	4b Classify addition	4.2. Polymerization reactions
Polymerization	polymerization reactions	4.3 Addition Polymerization reactions:
	to produce polymer	Free radical polymerization, Ionic
	4c Compare poly	Polymerization, Co-ordination
	condensation and poly	polymerization
	addition polymerization	4.4. Condensation Polymerization
	4dExplain rearrangements	Reactions: Poly condensation
	and stereo polymerization	polymerization, Poly addition
	4e Select suitable	polymerization, Rearrangements and
	polymerization technique	Stereo Polymerization
	for environmental	4.5 Polymerization technique for
	sustainability.	environmental sustainability.
Unit – V	5a Describe co-	5.1. Co-Polymerization: Definition and use
	polymerization	5.2. Co-Polymerization reactions:
Copolymerization	5.b Compare free radical and	a. Free radical polymerization - Ionic
	icon polymerization	polymerization, Co-poly condensation
	reactions	polymerization

Unit	Unit Outcomes (UOs) (4 to 6 UOs at different levels)	Topics and Sub-topics
	 5c Compare free radical and co-poly condensation reactions 5d Justify the use of co- poly condensation polymerization for the given application 	5.3 Dispose polymer electronic waste safely.

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

11	Unit Title	Teaching Hours	Distribution of Theory Marks				
Unit No.			R	U	А	Total	
			Level	Level	A	Marks	
I	Organic Chemistry	10	08	04	03	15	
II	Monomers	06	06	03	02	11	
	Polymers	10	06	07	05	18	
IV	Polymerization	12	06	06	08	20	
V	Copolymerization	04	02	02	02	06	
	Total	42	28	22	20	70	

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Prepare student reports as asked in experiments.
- b) Perform experiments as mentioned.
- c) Prepare list of Polymer suppliers along with brands, specifications, prices, terms and conditions.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environ and sustainability
- g) Guide students for using raw material data sheet.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the microproject should be about **14-16** (*fourteen to sixteen*) *student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Functional Group: Prepare a chart for types of functional groups.
- b) Monomer: Prepare a chart for types of monomer.
- c) Polymer: Prepare chart for classification of polymers
- d) Prepare chart to illustrate industrial applications of monomers and polymers.
- e) Visit any plastic industry and prepare report on monomers and polymers used.

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication with place, year and ISBN		
1	Textbook of Organic Chemistry	Chawla HM, Soni P.L.	Sultan Chand & Sons, New Delhi, 2019, 8180547676		
2	Textbook of Organic Chemistry	Bahl Aun & Bahl B.S	Sultan Chand & Sons, New Delhi, 2019, 9789352837304		
3	Textbook of Polymer Science	Fred W. Billmeyer	John Wiley & sons, Singapore,2009, 978-0-471- 03196-3		
4	Polymer Science	Govariker V.R	New Age International Pub, Delhi, 2019, 9788122438130		
5	Polymer Science and Technology	Fried J.R	Prentice Hall, Delhi,2014, 9780137039555		
6	Textbook of Organic Chemistry	Bansal R.K	New Age Publications, New Delhi, 2020, 978-81-224-3967-0		
7	Polymer Science and Technology	Ghosh Pramamoy	Tata McGrow Hill Education Pvt. Ltd, Delhi, 2010, 9780070707047		
8	Polymer Chemistry	Charles E. Carraher Jr.	CRC Press, Delhi, 2017, 9781498737388		

14. SOFTWARE/LEARNING WEBSITES

- 1. https://pubchem.ncbi.nlm.nih.gov/periodic-table
- 2. http://www.chem.uiuc.edu/GenChemReferences/nomenclature_rules.html
- 3. https://byjus.com/jee/chemical-bonding/
- 4. https://wou.edu/chemistry/courses/online-chemistry-textbooks/ch103-allied-healthchemistry/ch103-chapter-5-covalent-bonds-organic-functional-groups-and-biologicalmolecules/
- 5. https://www.toppr.com/guides/chemistry/polymers/classification-of-polymers/
- 6. www.sciencedirect.com

15. PO-COMPETENCY-CO MAPPING

Semester I		Basic Polymer Chemistry (Course Code: 4312301)									
Semester					POs	and PSOs					
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ developm ent of solutions	PO 4 Engineering Tools, Experiment ation &Testing	practices for	PO 6 Project Management	PO 7 Life-long learning	PSO 1 An ability to apply principles of material selection, product & mold/die design and development in plastic engineering.	PSO 2 An ability to conduct safe and environment friendly manufacturing and recycling of plastic products.	PSO 3 (If needed)	
<u>Competency</u> Use concepts of organic chemistry in the field of Plastic Engineering	3	-	-	3	2	-	2	-	-	-	
Course Outcomes 1. Interpret the carbon structure present in the polymer.	3	-	-	-	-	-	2	-	_	-	
2 Use relevant monomers and its functionality for different applications.	3	-	-	3	2	-	2	-	-	-	
3 Interpret polymer properties based on geometric structures.	3	-	-	-	2	-	-	-	-	-	
4 Use suitable polymer for different applications.	3	-	-	3	2		2	-	-	-	
 Select suitable polymerization technique for environmental sustainability. 	3	-	-	-	-	-	-	-	-	-	

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO/PSO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

Sr.	Name and Designation	Institute	Contact No.	Email
No.				
1	Shri Dharmendra M. Makwana In-charge Head Plastic Engineering	G.P., Valsad	9426359006	1224dmm@gmail.com
2	Shri Jaymin R. Desai Lecturer in Plastic Engineering	G.P., Ahmedabad	9428159779	jayminrdesai@yahoo.com
3	Shri Bhaskar I. Oza Lecturer in Plastic Engineering	G.P., Valsad	9426594686	bhaskaroza@yahoo.com
4	Shri Ajay S. Amin Lecturer in Plastic Engineering	G.P., Valsad	9426044254	ajayamin2000@yahoo.co.in
5	Shri Mukul V. Danani Lecturer in Plastic Engineering	G.P., Chhotaudepur	9429128349	mukul.danani@gmail.com
6	Ms. Nisha V. Tank Lecturer in Plastic Engineering	G.P., Valsad	9662721174	tanknisha01@gmail.com

NITTTR Resource Person

Sr. No.	Name and Designation	Department	Contact No.	Email
1	Dr. Nishit Dubey, Prof. & Head	DTVE&R	9229241793	ndubey@nitttrbpl.ac.in