GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI

Course Title: Renewable Energy & Emerging Trends in Electronics (Course Code: 4361106)

Diploma programmer in which this course is offered	Semester in which offered			
Electronics and Communication Engineering	Sixth			

1. RATIONALE

Learning about Renewable Energy and Emerging Trends in Electronics is essential, as these fields play a crucial role in shaping the future of technology, sustainability, and global development. Comprehending sustainable energy sources like solar, wind, hydro, and geothermal energy is essential to mitigating climate change and minimizing the ecological consequences of energy generation. The field of electronics is dynamic and constantly evolving. The utilization of the newest technologies in electronics is facilitated by keeping up with new trends, thereby promoting innovation across a range of industries.

2. COMPETENCY

The course content should be taught and implemented to develop the required skills in the students so that they can acquire the following competencies:

 Technical proficiency in understanding renewable energy technologies and emerging electronic trends, honing their capabilities in energy systems and cuttingedge electronics

3. COURSE OUTCOMES (COs)

The theory should be taught and the practical should be carried out in such a manner that students can acquire required learning outcomes in the cognitive, psychomotor and affective domains to demonstrate the following Course Outcomes.

- Understand the fundamental principles of renewable energy systems and their applications
- Stay informed about current trends and innovations in Smart Materials and systems
- Gain knowledge of Emerging Trends in Electronic Components
- Develop basic idea of Trends in interfacing & Computing

4. TEACHING AND EXAMINATION SCHEME

Teach	_		Total Credits	Examination Scheme					
(Ir	ı Houi	rs)	(L+T+P/2)	Theory Marks			Total		
L	Т	P	C	CA	ESE	CA ESE		Marks	
2	0	2	3	70	30*	25	25	150	

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate the integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the subcomponents of the COs. Some of the PrOs marked '*' are compulsory, as they are crucial for that particular CO. These PrOs need to be attained at least at the 'Precision Level' of Dave's Taxonomy related to the 'Psychomotor Domain'

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Understand the Block Diagram of a Home Solar rooftop system*	1	2
2	Study E-vehicle kit with various parts of electric vehicle & compare specifications of different EVs	1	2
3	Study wearable systems like Smart Watches, Smart glasses & wearable health monitoring systems	2	2
4	Understand the structure of a drone *	2	2
5	Understand the block diagram of a generic biometric system*	3	4
6	Study various AR-VR gadgets and technologies	3	4
7	Install Raspberry Pi OS on your SD card using Raspberry Pi imager, Setup and configure Raspberry Pi computer *	4	4
8	Interface/Simulate LED, button and buzzer with Raspberry Pi	4	2
9	Interface PIR, temperature and humidity sensors with Raspberry Pi	4	4
10	Demonstrate a burglar alarm system using Raspberry Pi*	4	4
11	Getting started with machine learning using tools like machinelearningforkids/scratch/scikit-learn or TensorFlow *	4	4
12	Create a cartoon that smiles if you type nice things to it and cries if you type bad things to it. (Train, test and implement text classification machine learning algorithm using machinelearningforkids/scratch/scikit-learn or TensorFlow)	4	4
13	Make a dancing panda that gets shy and stops dancing if it sees you looking. (Train, test and implement image classification machine learning algorithm using machinelearningforkids/scratch/scikit-learn or TensorFlow)	4	4
14	Make a cartoon that learns to recognize Gujarati/other languages. (Train, test and implement sound classification machine learning algorithm using	4	2

machinelearningforkids/scratch/scikit-learn or TensorFlow)		
--	--	--

Note:

- I. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry-relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- II. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above-listed **Practical Exercises** of this course required which are in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %				
1	Lab Records	05				
2	Question answer or Writing steps exercise	20				
3	Execution of exercise	40				
4	Observations/ Result /Printout	20				
5	Viva voice	15				
	Total					

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

Sr. No.	Equipment Name with Broad Specifications	Pr. No.
1	Solar rooftop system	1
2	E-vehicle kit to study various parts of electric vehicle	2
3	Smart gadgets like smartwatches, goggles etc	3
4	Drone	4
5	Biometric system	5
6	AR-VR gadgets	6
7	Raspberry Pi	7
8	Various Sensors and electronic components	8,9,10
9	Machine learning software and hardware system	11,12,13,14

7. AFFECTIVE DOMAIN OUTCOMES

- Development of positive attitudes, values, and motivations toward sustainable energy practices and technological advancements.
- Appreciation for the importance of renewable energy sources and the role they play in addressing environmental challenges.

- Cultivate a sense of responsibility and concern for the environment, emphasizing the impact of energy choices on ecosystems and global climate patterns.
- Foster an innovative mindset by recognizing the significance of emerging trends in electronics and their potential to revolutionize the energy landscape.

8. UNDERPINNING THEORY:

The major underpinning theory is given below based on the higher level UOs of Revised Bloom's taxonomy that are formulated for the development of the COs and competency. If required, more such higher-level UOs could be included by the course teacher to focus on the attainment of COs and competency.

Unit	Unit Outcomes(UO)	Topics & Subtopics
Unit - I	Students will be able to	1.1 Introduction to Renewable
Renewable Energy Systems	1a. Describe and prioritize	Energy and its Importance
and Applications	renewable energy	1.2 Types of Renewable Energy
	1b. Discuss different types of	Sources-
	Renewable Energy Sources	• Solar
	1c. Explain Emerging	• Wind
	renewable energy	Hydroelectric
	technologies & innovations	 Biomass
	1d. Explain Solar	 Geothermal
	Photovoltaic effect &	1.3 Emerging Trends in
	Principle of photovoltaic	Renewable Energy-
	conversion,	• tidal wave
	1e. List the different types of	• solar thermal
	Solar Cell	• hydrogen
	1e. Understand the Block	1.4 Introduction to Solar Cell,
	Diagram of a Home Solar	Photovoltaic effect,
	rooftop system	Principle of photovoltaic
	1f. Illustrate a Block diagram	conversion
	of an electric vehicle & EV	1.5 Types of Solar Cells-
	architecture	• Silicon
	1g. Describe the types of EV	Monocrystalline
	1h. Discuss different Energy	Silicon
	sources for EV	 Polycrystalline
	1i. Know hybrid energy	• Thin Film
	sources	Amorphous Silicon
		Cadmium Telluride
		Copper Indium
		Gallium Selenide
		1.6 Block diagram of Solar
		rooftop system
		1.7 Introduction to Electric
		Vehicle Technology and its
		Types-
		Battery Electric Vehicle
		(BEV)
		Hybrid Electric Vehicle
		(HEV)
		Plug-in Hybrid Electric
		<u> </u>
		Vehicle (PHEV)

		Fuel Cell Electric
		Vehicle (FCEV)
		1.8 Energy sources for EV:
		 Battery
		Fuel Cell
		 Ultracapacitor
		• Flywheel
		Regenerative Braking
		Hybrid Energy Sources
Unit – II Smart Materials	Students will be able to	2.1 Introduction to
and Systems	2a. Understand	Nanotechnology
	Nanotechnology	2.2 Applications of
	2b. List Nanotechnology	Nanotechnology
	applications	2.3 Wearable Technology:
	2c.Know various wearable	Smart Watches and Smart
	technologies	glasses, or wearable health
	2d. Explain UAVs or drones	monitoring system
	2e. Discuss the applications	2.4 Introduction to UAVs or
	of UAVs or drones	drones and their applications
	2f. Describe the working	2.5 Working principle of drone
	principle of a drone	2.6 Major components of drone
	2g. Describe the Block	2.7 Smart System Examples
	diagram of a drone and its	self-driving cars, artificial
	major components	pancreas, Internet of Things
	2h. Understand various	(IoT), M2M-enabled
	Smart Systems	advanced manufacturing
	2i. Illustrate Block diagrams	robots
	of Smart Systems like water	2.8 Smart Systems Case Study
	pollution monitoring, Street	 Water pollution
	light control and monitoring,	monitoring
	Health monitoring and	 Smart Street light
	homes & Gadgets	control and monitoring
		Smart Health
		Monitoring
		• Smart Homes & Gadgets
Unit-III	Students will be able to	3.1 Introduction to Organic and
Emerging Trends in	3a. Understand organic	Inorganic Electronics
Electronic Components	electronics	3.2 Characteristics &
	3b. Compare between	Differences
	Inorganic and Organic	3.3 Advantages of Organic
	electronics	Electronics
	3c. Explain the advantages of	3.4 Different types of organic
	Organic electronics	components:
	3d. Explain different types of	Organic LED (OLED) FETT (OLET)
	organic components: OLED,	Organic FET(OFET)
	OFET, OPVD	Organic Photovoltaic
	3e. Understand Biometrics	devices (OPVD)
	3f. Explain Biometric	3.5 Introduction to Biometrics
	systems and their basic block	3.6 Biometric system: sensor
	diagram	module, basic building block
	3g. Understand AR/VR,	of generic biometric system,

Unit IV: Trends in	industry perspectives and opportunities 3h. Explain AR/VR core technology and discuss its applications Students will be able to	database module, matching module 3.7 Introduction to AR/VR-Industry perspectives and opportunities 3.8 AR/VR Core Technology, Experience and Applications 4.1 Getting Started with
interfacing & Computing	4a. Understand the Block diagram of Raspberry Pi 4b. Install Raspberry Pi OS on your SD card using Raspberry Pi Imager 4c. Setup and configure Raspberry Pi computer 4d. Interface LED, button and buzzer with Raspberry Pi 4e. Interface PIR, temperature and humidity sensors with Raspberry Pi 4f. Compare Types of machine learning techniques: supervised, unsupervised, and reinforcement learning 4g. Illustrate Python programming language, Python libraries like NumPy, pandas, keras etc. for data manipulation 4h. Implement machine learning algorithms using machinelearningforkids /scratch/scikit-learn/ TensorFlow	Raspberry Pi 4.2 Installation and setup of Raspberry Pi computer using Raspberry Pi imager on SD card 4.3 Control various electronic components using Scratch/python on the Raspberry Pi • LED • button • buzzer and sensors - • PIR • temperature • humidity 4.4 Introduction to Machine Learning and its Types- • Supervised • Unsupervised • Reinforcement 4.5 Basics of Python for Machine Learning using libraries like NumPy, pandas, keras etc. 4.6 Introduction to ML tools for machine learning implementations • Machinelearningforkids • Scratch • scikit-learn • TensorFlow

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN:

Unit No.	Unit Title	Teaching Hours	Dis	Distribution of Theory Marks		
			R	U	A	Total Marks
I	Renewable Energy Systems and Applications	8	8	6	4	18

II	Smart Materials and Systems	6	4	8	4	16
III	Emerging Trends in Electronic Components	6	8	4	4	16
IV	Advanced Trends in Computing Applications	8	4	8	8	20
		28	24	26	20	70

Legends: \mathbf{R} = Remember \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from the above table.

10. SUGGESTED STUDENT ACTIVITIES

- Prepare and submit a report on Renewable Energy Megaprojects (Large-Scale Solar and Wind Installations) of Smart City
- Visit a nearby renewable energy power plant and report documentation.
- Prepare a PowerPoint presentation on drone technology.
- Prepare a PowerPoint presentation on advanced technologies in Electric vehicles.
- Prepare a PowerPoint presentation on AR/VR.

11. SUGGESTED PROJECT LIST

- IoT sensors-based electronic circuits on renewable energy assets, such as solar panels and wind turbines, monitor performance, weather conditions, and maintenance needs
- Burglar Alarm using Raspberry Pi
- Line follower robot using Raspberry Pi
- Weather station using Raspberry Pi
- Train, test and implement image classification machine learning algorithm using machinelearningforkids /scratch/scikit-learn or TensorFlow
- Train, test and implement text classification machine learning algorithm using machinelearningforkids /scratch/scikit-learn or TensorFlow
- Train, test and implement sound classification machine learning algorithm using machinelearningforkids /scratch/scikit-learn or TensorFlow

12. SUGGESTED LEARNING RESOURCES

- "Renewable Energy: Power for a Sustainable Future" by Godfrey Boyle, 3rd Edition(2012)
- "Renewable and Sustainable Energy Reviews" Elsevier Journal Open Access.
- "Introduction to Biometrics" by forwarded James Wayman Anil K . Jan, Arun A Ross Kartik Nandkumar
- "Organic Electronics an Introduction" by Dr Sanjay Tiwari Professor & Head SOS in Electronics & Photonics Pt. Ravishankar Shukla University, Raipur
- The Official Raspberry Pi Beginners Guide by 5th Edition by Gareth Halfacree

- https://cfdflowengineering.com/working-principle-and-components-of-drone/#:~:text=The%20basic%20components%20of%20a,at%20each%20of%20th ese%20components
- Drones For Dummies 1st edition by Mark LayFay published by For Dummies

13. SOFTWARE/LEARNING WEBSITES

- Coursera "Introduction to Renewable Energy" by The University of Queensland
- https://machinelearningforkids.co.uk
- https://www.raspberrypi.org/
- https://www.tensorflow.org/
- https://scikit-learn.org/

14. PO-COMPETENCY-CO MAPPING:

Semester VI	EC Engineering Renewable Energy & Emerging Trends in Electronics (Course Code: 4361106)							
				POs				
Competency & Course Outcomes	Basic and Disciplin e- specific knowled ge	s	Design/ develop ment of solutions	Engineeri ng Tools, Experime ntation and Testing	Engineerin g Practices for society, sustainabili ty and environme nt	Projec t Mana gemen t	Life-long learning	
<u>Competency</u>	interdisc contribu leveragin ensuring	t creates bridges between renewable energy and emerging electronics, nterdisciplinary knowledge to develop innovative solutions, contributing to the evolution of sustainable energy practices and everaging cutting-edge electronic technologies for enhanced efficiency, ensuring a well-rounded skill set for future challenges in the dynamic intersection of these fields.						
Course Outcomes CO1 Understand the fundamental principles of renewable energy sources	3	1	1	1	1	1	2	
CO2 Stay informed about current trends and innovations in Smart and autonomous systems	3	3	3	3	2	3	3	
CO3 Analyze the design and operation of advanced electronic components in emerging fields Develop basic applications in Advanced computing	3	1	1	1	2	1	3	
CO4 Develop basic applications in Advanced computing	3	3	3	3	2	3	3	

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

15. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1	Shri Ghanshyam V Parmar	AVPTI, Rajkot	9033946109	parmargv@yahoo.com
2	Shri Rashmin S Tanna	AVPTI, Rajkot	9924277663	Dr.rashminstanna@gm ail.com
3	Dr Mitchell S Prajapati	G P A' bad	9879012082	msprajapati@gpahmed abad.ac.in
4	Dr Monali R Prajapati	G P G' nagar	7490052256	monaliprajapatigpg623 @gmail.com

BoS Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Dr A S Pandya, Principal BoS Chairman Electrical & Allied Branches	BPTI, Bhavnagar	9426201171	aspandya22@rediffmail.com
2.	Dr. S N Sampat HoD & BoS Member EC	LE College Morbi	9033777389	snsampat@gmail.com
3.	Shri U V Buch, LEC & BoS Member Branch Coordinator-EC	G P A' bad	9825346922	uvbuch@gmail.com