GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: PLC & Industrial Automation

(Course Code: 4351109)

Diploma Program in which this course is offered	Semester in which offered
Electronics & Communication Engineering	5 th Semester

1. RATIONALE

Automation is the need of current era. With the advancements in the field of AI and computer science, automation in the industry has evolved very much in this decade and it became a part of our day to day life now. Different types of automation systems are used for automatic and optimum control of different electrical and non-electrical parameters. Automation is the current need in the field of electronics, mechatronics, process control and smart home. So Diploma Engineers should be able to maintain them. This requires the thorough knowledge and practical skills. Diploma engineers should know very well about logical control action fundamentals. Hence this curriculum has been designed so that the students will be able to explain the construction, working and applications of various logical control strategies for automation.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Use PLC for industrial automation systems.

3. COURSE OUTCOMES

- **CO1.** Identify components for logical process control in automation applications.
- **CO2.** Connect peripherals with the PLC for automation applications.
- **CO3.** Develop basic PLC programmes for automation applications.
- **CO4.** Develop advanced PLC programmes for automation applications.
- **CO5.** Maintain PLC in various automation applications.

4. TEACHING AND EXAMINATION SCHEME

Теас	Teaching Scheme Total Examination			ation Sche	eme							
(In Hours)	Credits (L+T+P)	Theory Marks		Theory Marks		Theory Marks		Prac Ma		Total Marks
L	т	Р	С	ESE	СА	ESE	СА					
3	0	2	4	70	30*	25	25	150				

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T** – Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** – Credit **ESE** - End Semester Examination; **CA** - Continuous Assessment.

5. SUGGESTED PRACTICAL EXERCISES

Following practical outcomes (PrOs) are the sub-components of the Course Outcomes (Cos). Some of the **PrOs** marked with **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr.	Unit	Practical Exercises	Approx
No.	No.	(Outcomes' in Psychomotor Domain)	. Hrs.
			Required
1.	1	Identify continuous, discrete and composite control Systems.	2
2.	Ι	Connect direct digital control for a process.	2
3.	Ι	Connect data logger to a process.	2
4.	Ι	Identify components of SCADA.	2
5.	11	Prepare PLC specification for given situation for automation.	2*
6.	11	Identify various modules and component of PLC hardware.	2*
7.		Assemble various modules and component of PLC to make a PLC system.	2
8.	IV	Use relay as a switch to make circuit ON.	2
9.	IV	Implement NOT, AND & OR logic using relay(s).	2*
10.	IV	Implement NAND & NOR logic using relay(s).	2*
11.	IV	Implement EX-OR & EX-NOR logic using relay(s).	2*
12.	IV	Identify programming formats and proper construction of ladder diagrams of given PLC.	2
13.	IV	Build NOT, AND & OR logic using ladder diagram with the help of PLC.	2*
14.	IV	Build NAND & NOR logic using ladder diagram with the help of PLC.	2*
15.	IV	Build EX-OR & EX-NOR logic using ladder diagram with the help of PLC.	2*
16.	V	Develop ladder diagram to prepare latching relay.	2*
17.	V	Develop ladder to switch ON motor for given condition	2
18.	V	Wire given temperature control system for automation.	2*
19.	V	Wire given counting system for automation.	2

Note

i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

ii. Care must be taken in assigning and assessing study report as it is a first year study report. Study report, data collection and analysis report must be assigned in a group. Teacher has to discuss about type of data (which and why) before group start their market survey.

The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which

are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Prepare the experimental setup and documentation of the program/application	25
2	Operate /Program the PLC correctly	30
3	Follow safe practices measures	10
4	Record observations/Output of PLC correctly	15
5	Interpret the results and conclude	20
	Total	100

6. MAJOR EQUIPMENTS/ INSTRUMENTS REQUIRED

These are major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to user in uniformity of practical's in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Computer with latest configuration with Windows Operating System and licensed/Free simulator software and internet connection	All
2	PLC trainer kit with 8 or 16 analog and digital input/output cards	All
3	D.C. power supply 12V and 24 V	All
4	Multi-meter, Breadboard, patch cord.	All
5	Encoder	19
6	Limit switch , proximity switch	All
7	Temperature sensor	18

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the abovementioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Follow safety precautions.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year,
- ii. 'Organization Level' in 2nd year,
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of Revised Bloom's

taxonomy that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit – I Introduction to automation systems	 1a. Justify the need of automation 1b. Describe different industrial controllers 1c. Process control techniques. 1d. Explain the working of data logger, DDC, SCADA system 1e. Explain the working of variable frequency AC drive 	Introduction to automation and process control Basic block diagram of control system open loop and closed loop control system Different types of industrial controllers On-Off, P, PI, PD, PID controllers and their time equation and response Continuous Process Control Discrete-state Process Control Discrete-state Process Control Block diagram of data logger, DDC, SCADA systems Advantages of data logger, DDC, SCADA systems Scope of automation in industry. Block diagram and working of variable
Unit – II PLC Architecture and applications	 2a. Draw Block diagram of PLC. 2b. Describe PLC architecture. 2c. Explain the working of PLC. 2d. List the steps to configure the PLC. 2e. List out peripherals for PLC 2f. Draw basic symbols used for PLC. 2g. Describe selection criteria for PLC. 2h. State advantages and Disadvantages of PLC. 2i. List out PLC applications in industries and automation Systems. 	frequency AC drive Introduction to PLC with its block diagram Configuration of PLC (Different components of modular PLC) Architecture and working of PLC PLC peripherals PLC symbols Selection criteria of PLC Advantages and disadvantages of PLC PLC applications

PLC & Industrial Automat	lion	Course Code: 4351
Unit – III	3a. Describe analog input	Analog input/ output module
PLC	/output module for PLC.	Digital input/output modulo
peripherals	3b. Describe digital input /output	Digital input/ output module
and wiring	module for PLC.	Connection of different peripheral
	3c. Explain and Interface	devices to PLC
	peripheral devices to PLC via	Input devices :
	analog/digital input/output	Pushbutton, Limit switch, proximity switch, level switch, and optical
	module (including wiring)	encoder.
	3d. Draw connection diagram to	Output Devices:
	Connect the switching	Relay, solid state relay, contactor,
	deviceswith PLC.	solenoid valve, and AC drive PLC power connection (wiring).
	3e. Describe the isolation	Advantages of isolation and Different
	technique.	Isolation technique
	3f. Draw and explain Isolated and	Isolated and non-isolated input/output
	non- isolated input wiring to	wiring with PLC.
	PLC.	
Unit – IV	4a.Describe general	Introduction to General PLC
Basic PLC	programmingprocedure.	Programming Procedures.
programming	4b.List special key board and	Programming equipment-
	display functions of hand-	Laptop and Hand held programmer
	heldprogrammer	and its connection to PLC
	4c.List the steps to upload ON-	Programming sequence of PLC
	line, Off-line program by	PLC Ladder Diagrams
	hand-held programmer	Process scanning consideration
	4d.List the steps for Programming	PLC operational faults,
	sequence of PLC.	troubleshooting procedure
	4e.Describe the legal (proper)	and corrective steps to rectify
	/illegal (improper) PLC	it.
	ladder diagram	Realize NOT, AND, OR, NAND, NOR,
	4f.List the important	Ex-OR, Ex-NOR logic using relay logic
	scanningconsiderations for	and ladder logic.
	PLC.	
	4g.List the corrective steps to	
	betaken in case of PLC	
	operational fault.	
	4h. Develop Relay based logical	
	functions.	
	4i.Develop Ladder logic for NOT,	
	AND, OR, NAND, Ex-	
	OR, Ex-NOR logic.	

		Course coue. 455
Unit – V	5a.Develop ladder logic for given	Boolean algebraic equation.
Advanced PLC	Boolean algebraic equation.	
programming	5b.Develop Ladder logic for	Holding (latching relay) contact.
and	holding contact.	
applications	5c .Develop ladder logic for	Serial, Parallel and Nested
	simple and complex branching ladder rung.	branching in ladder rung.
	5d.Develop ladder logic for ON-	Temperature control using PLC ladder
	OFF temperature control	logic.
	using	
	timer and limit switches	Up , Down and Up/down Counter
	5e .Develop Ladder logic for	timers
	Counter	
	5f. Develop Ladder logic for	
	timers	

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

		Teaching Hours	Distribution of Theory Marks				
Unit	Unit Title		R Level	U Level	A Level	Total Marks	
I	Introduction to automation systems	07	02	06	02	10	
II	PLC architecture and applications	08	02	04	08	14	
III	PLC peripherals and wiring	08	02	04	08	14	
IV	Basic PLC programming	10	02	04	12	18	
V	Advanced PLC programming and applications	09	02	04	08	14	
То	tal	42	10	22	38	70	

Legends: R = Remembrance; **U** = Understanding; **A** = Application and above levels (Revised Bloom's taxonomy)

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related cocurricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course. Students should perform following activities in group (or individual) and prepare reports of about 5 pages for each activity. They should also collect/record physical evidence for their (student's) portfolio which may be useful for their placement interviews:

- a) Present seminar on various topics from course content
- b) Prepare poster of PLC based automation system.
- c) Mini project for industrial application using PLC.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

a) Massive open online courses (MOOCs) may be used to teach various topics/subtopics.

b) Guide student(s) in undertaking micro-projects.

c) 'L' in section No. 4 means different types of teaching methods that is to be employed by teachers to develop the outcomes.

d) Show animation/ video related to course content.

e) Co-relating the importance of content of this course with other courses/ practical applications. (e.g. importance of a content course or whole course related to automation in industrial and domestic applications.f) Introduce automation of E-waste recycling plant among the students.

g) Guide students on how to address issues on environment and sustainability using PLC based automation.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group based (group of 3 to 5). However, in the fifth and sixth semesters, the number of students in the group should not exceed three.

The micro-project could be industrial application based, internet-based, workshop-based, laboratory based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro project should be about 12-14 (fourteen to sixteen) student engagement hours during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Make a working model of traffic light control using PLC.
- b) Make a working model of elevator using PLC.
- c) Make a working model of Automatic Car Parking System-multi Level.
- d) PLC Based Automatic Bottle Filling Application.
- e) PLC Based Door Open and Closing System.
- f) PLC Based Automatic Counting System.
- g) PLC Based Level Control System.
- h) PLC Based Automatic Mixing Applications.
- i) PLC based bottle counting system.

j) Collect specifications of PLC from different manufacturers and prepare a market survey report.

k) PLC based E-waste handling plant

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication
1	Programmable logic	John w. Webb	PHI Learning,
	Controllers Principles and applications	Ronald A Reis	
2	Programmable logic	John R Hackworth	Pearson
	Controllers Programming	Frederick D.	
	methods and applications	Hackworth Jr.	
3	Process Control Principles and applications	Surekha Bhanot	Oxford University press
4	Instrumentation engineer's	B.G Liptak	Chilton Book Co.,
	handbook		Philadelphia
5	Process control Instrumentation technology	Curtis D Johnson	PHI pvt. Ltd.
6	Modern Power Electronics and AC Drives	Bimal k bose	PHI Pvt. Ltd.

S

14.

0

FTWARE/LEARNING WEBSITES

- 1) <u>www.control.com</u>
- 2) <u>www.ourinstrumentationgroup.com</u>
- 3) <u>www.plcs.net</u>
- 4) <u>www.seimens.com</u>
- 5) <u>www.triplc.com</u>
- 6) <u>https://instrumentationtools.com</u>
- 7) <u>theautomationblog.com</u>
- 8) <u>www.plccompare.com</u>
- 9) www.plcdev.com
- 10) <u>www.plcprogramming.com</u>
- 11) https://plcmanual.com/
- 12) <u>https://plcacademy.com</u>
- 13) <u>https://realpars.com/plc</u>
- 14) <u>www.plcgurus.net</u>
- 15) <u>https://app.plcsimulator.online/</u>
- 16) <u>https://forumautomation.com/t/top-free-plc-simulator-software/2789</u>
- 17) http://plcladdersimulator.weebly.com/
- 18) Learn PLC SCADA Android Application

15. PO-COMPETENCY-CO MAPPING

Semester V	PLC & INDUSTRIAL AUTOMATION
	(Code: 4351109) (Programme Elective-II)

		POs					
Competency & Course Outcomes	PO1 Basic & Discipline specific knowledge	PO2 Problem Analysis	PO3 Design/ development of solutions	PO4 Engineering Tools, Experimentation & Testing	PO5 Engineering practices for society, sustainability & environment	PO6 Project Management	PO7 Life-long learning
Competency Course outcome	Use PLC for ir	ndustrial aut	omation systems				
CO1) Identify components for logical process control in automation	2	2	-	2	-	-	2
CO2) Connect peripherals with the PLC for automation applications.	3	2	2	3	-	2	2
CO3) Develop basic PLC programmes for automation applications.	3	3	3	3	-	1	2
CO4) Develop advanced PLC programmes for automation applications.	3	3	3	3	-	1	2
CO5) Maintain PLC in various automation applications.	3	3	-	3	1	2	2

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

Sr.	Name and Designation	Institute	Contact No.	Email
No.				
1.	Shri B. B. Renuka	A.V.P.T.I.,Rajkot	9426783082	renukasir@gmail.com
2.	Shri B. B. Kathiriya	A.V.P.T.I.,Rajkot	9825659779	bbk261981@gmail.com

BoS Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Dr. A.S. Pandya, Principal	BPTI, Bhavnagar.	9426201171	aspandya22@rediffmail.com
2.	Dr. S N Sampat, HoD	L E College (Dip.), Morbi.	9033777389	snsampat@gmail.com
3.	Shri U V Buch, LEC	GP A'bad	9825346922	uvbuchgmail.com