GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

Semester-V

Course Title: Internet of Things

(Course Code: 4351101)

Diploma programmer in which this course is offered	Semester in which offered
Electronics & Communication Engineering	5 th Semester

1. RATIONALE

The Internet of Things (IoT) connects physical devices, vehicles, buildings, and other items to the Internet, enabling them to collect and exchange data. IoT aims to improve efficiency, enhance decision-making, and create new business opportunities. This course introduces the fundamental concepts, technologies, and applications of the IoT. Students will learn how to design and implement IoT systems, analyze and interpret data from IoT devices, and understand the impact of IoT on various industries.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Develop, test and maintain IoT System.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- 1) Understand the basic concepts, components, and architecture of IoT.
- 2) Learn the various protocols used to design IoT systems.
- 3) Design and implement IoT systems by using sensors, actuators, and platforms (Arduino/NodeMCU/Raspberry Pi).
- 4) Demonstrate IoT-based Cloud Service and Case Study.

Teachir	ng Scho	eme	Total Credits		Exa	mination S		
(In l	Hours)		(L+T+P/2)	Theory Marks		Practica	Total	
L	Т	Р	С	CA	ESE	CA	ESE	Marks
2	0	2	3	30*	70	25	25	100

4. TEACHING AND EXAMINATION SCHEME

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T** – Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** – Credit, **CA** - Continuous Assessment; **ESE** - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the subcomponents of the Course Outcomes (Cos). Some of the **PrOs** marked **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	To study IoT Architecture	I	2
2	To study IoT Protocols	П	2
3	Getting started with NodeMCU, Arduino with ESP8266 and ESP32 in the Arduino IDE.		2
4	GPIO Interfacing and programming (LED, Switch, Motor).	Ш	2
5	Digital on/off sensor (PIR and IR) Interfacing programming.	Ш	2
6	Controlling devices remotely using Bluetooth link.	Ш	2
7	Controlling devices remotely using Wi-Fi link.	Ш	2
8	Web based device control (Perform the practical to build a web server and control device from a local web server).	IV	2
9	Getting started with different cloud system.	IV	2
10	Analog sensor programming and uploading sensor data on cloud.	IV	2
11	Interfacing and programming of actuators, Control devices remotely using cloud.	IV	2
12	Introduction to raspberry pi and installing operating system for raspberry pi	IV	2
13	Controlling devices remotely using raspberry pi based server	IV	2
14	Getting started with cisco packet tracer and implement IoT based home automation using it.	IV	2
			28 Hrs.

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii.* The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %					
1	Understand the basic concept, components, and	20					
	architecture of IoT System						
2	Program Embedded IoT devices	30					
3	Use IoT protocol to upload sensor data and to control	20					
	devices						
4	Design IoT application	30					
	Total	100					

5. MAJOR EQUIPMENT/ INSTRUMENTS AND SOFTWARE REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to use in uniformity of practical's in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Computer system with operating system: Windows 7 or higher Ver., macOS, and Linux, with 4GB or higher RAM, Python versions: 3.7.X	All
2	Various Sensors, various Actuator, and Physical Devices (NodeMCU, Arduino with ESP8266, ESP32 in the Arduino IDE, Raspberry-pi)	All

6. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the abovementioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a. Work as a leader/a team member (while doing a micro-project).
- b. Follow safety practices.
- c. Maintain tools and equipment's.
- d. Adhere to ethical practices.

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics			
	(4 to 6 UOs at different levels)				
Unit-I	Students will able to:-	1.1 IoT Definition			
Introduction	1.a Understand the	1.2 IoT characteristics			
to loT	basic concept of IoT	1.3 M2M and IoT			
	1.0 Explain IOT	1.4 End-to-End IoT Architecture			
	major components of IoT	1.5 The physical design of IoT			
	1.c Challenges	1.6 Logical Design of IoT			
	and applications of IoT	1.7 Interdependencies of IoT and cloud			
		computing			
		1.8 IoT challenges			
		1.9 IoT applications			
		Consumer IoT,			
		Commercial IoT,			
		 Industrial IoT, 			
		Infrastructure IoT,			
		Military Things (IoMT)			
Unit-II	Students will be able to:-	2.1 Lists and operations on Lists			
IOI Protocols	2.a Understand the protocols	2.2 Link layer protocols,			
	and their need in for	2.3 Network layer protocols			
		2.4 Transport layer protocols			
		2.5 Application layer protocols:			
		 Hypertext transfer protocol (HTTP), 			
		Systematic HTTP access			
		methodology,			
		Web Socket.			
		2.6 Constrained application protocol			
		(COAP)			
		2.7 Message Queue Telemetry			
		Iransport Protocol (MQTT)			
		2.8 Secure MQII			
		2.9 XMPP			
		2.10 AMQP			
Unit-III	Students will be able to:-	3.1 Introduction to			
IOI Physical	3.a Understand the various	Arauno NodoMCU			
Endpoints	2 h Able to interface with	NOUEIVICU, Baspherry Di			
	controlling bardware	• Raspuerry FI 3.2 Serial SPI 12C			
	actuator, and sensors with	3.3 Controlling actuators- (interface with			
	Arduino/NodeMCU	Arduino/ NodeMCU)			

		 Connecting LED,
		• Buzzer,
		 Switching High Power devices with
		transistors,
		 Controlling AC Power devices with
		Relays,
		 Controlling servo motor,
		 Speed control of the DC Motor,
		Unipolar and Bipolar Stepper
		motors
		3.4 Sensors- (interface with Arduino/
		NodeMCU)
		• Light sensor,
		Temperature sensors,
		 voltage sensor,
		Temperature and Humidity Sensor
		DHT11,
		Motion Detection Sensors,
		Wireless Bluetooth Sensors, Level
		Sensors,
		Distance Measurement with
		Ultrasonic sensor
		NFC
		RFID
		Fingerprint Sensor
Unit-IV	Students will be able to:-	4.1 Introduction to
IoT Physical	4.a Understand the various	Cloud Storage models
Servers, Cloud	cloud service	Communication APIs
Offerings with	4.b Learn some IoT-based case	4.2 Web Server
some case	studies	• Web server for IoT,
studies		Cloud for IoT
		4.3 IoT Case Study
		Home automation with IoT, River
		water pollution monitoring,
		• Smart city street light control and
		monitoring,
		Health care monitoring,
		-

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

	Linit		Distribution of Theory Marks				
Unit	Title	Teaching	R	U	Α	Total	
INO.		Hours	Level	Level	Level	Marks	
I	Introduction to IoT	6	4	8	4	16	
II	IoT Protocols	8	4	12	4	20	
Ш	IoT Physical Devices and Endpoints	8	4	4	12	20	

IV	IoT Physical Servers, Cloud Offerings with some case studies	6	2	4	8	14
Total		28	14	28	28	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course. Students should perform following activities in group (or individual) and prepare reports of about 5 pages for each activity. They should also collect/record physical evidence for their (student's) portfolio which may be useful for their placement interviews:

- a) Undertake micro-projects in teams .
- b) Give a seminar on any relevant topics.
- c) Participate in various online hackathons programmes/competition.
- d) Make a list of IoT based emerging technology/applications.
- e) Students are encouraged to register themselves in various MOOCs such as: Swayam, edx, Coursera, Udemy, Sololearn etc. to further enhance their learning.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/subtopics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4 means* different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) Code reviews: Conduct code reviews to provide feedback to students on their coding skills. This will help them to identify areas where they need to improve and also learn best practices from their peers.
- e) Online resources: Provide students with access to online resources, such as tutorials, videos, and forums that will help them to deepen their understanding of Python concepts and also provide them with additional practice opportunities.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated

work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro project should be about **12-14** *(Twelve to fourteen) student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects based on cisco packet tracer/ Raspbery pi/ node MCU is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Smart Agriculture Monitoring System using IoT
- b) Smart Parking System using IoT
- c) Home Security System using IoT
- d) Waste Management System using IoT
- e) Smart Water Management System using IoT
- f) Air Quality Monitoring System using IoT
- g) Smart Health Monitoring System using IoT
- h) Smart Transportation System using IoT
- i) Industrial Automation System using IoT
- j) Smart Retail Management System using IoT

Title of Book Sr. Author Publication with place, year and ISBN No "Internet of Things (A Vijay Madisetti Paperback, 2015 and Arshdeep ISBN: 978-0996025515 1 Hands-on-Approach)" Bahga "An Introduction to Internet Paperback, 2019 Rahul Dubey, ISBN: 9789353501020 of Things: Connecting 2 Devices, Edge Gateway, and Cloud with Applications" Internet of Things: Raj Kamal, Mc Graw Hill Education Architecture and Design ISBN-13:978-93-5260-522-4 3 Principles ISBN-10: 93-5260-522-5

13. SUGGESTED LEARNING RESOURCES

14. SOFTWARE/LEARNING WEBSITES

- NPTEL online course on IoT: https://onlinecourses.nptel.ac.in/noc18_cs08_
- <u>https://docs.arduino.cc/learn/starting-guide/getting-started-arduino</u>
- <u>https://projects.raspberrypi.org/en/projects/raspberry-pi-getting-started</u>
- <u>https://www.netacad.com/courses/packet-tracer</u>
- <u>http://tutorials.ptnetacad.net/</u>
- <u>https://www.javatpoint.com/iot-internet-of-things</u>
- IoT Tutorial point www.tutorialspoint.com
- <u>https://www.microsoft.com/en-us/internet-of-things/0</u>
- <u>https://www.scnsoft.com/blog/iot-architecture-in-a-nutshell-and-how-it-works</u>

• <u>https://wso2.com/whitepapers/a-reference-architecture-for-the-internet-of-things</u>

15. PO-COMPETENCY-CO MAPPING:

Semester V	Internet of Things (Course Code:4351101)						
	POs						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ develop ment of solution	PO4 Engineering Tools, Experimen- tation & Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage- ment	PO 7 Life- long learning
<u>Competency</u>	Develop, test, and Maintain IoT System						
CO1- Understand the basic concepts, components, and architecture of IoT	3	2	1	-	-	2	3
CO2- Learn the various protocols used to design IoT systems	3	1	2	1	-	2	3
CO3- Design and implement IoT systems by using sensors, actuators, and platforms (Arduino /NodeMCU /Raspberry Pi)	3	3	3	2	1	3	3
CO4- Demonstrate IoT- based Cloud Service and Case Study	3	3	3	2	1	3	3

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No	Name and Designation	Institute	Contact No.	Email
1.	Mr. Kamlesh D.	Government	9909982762	kdthummar@gpahmed
	Thummar	Polytechnic		abad.ac.in
		Ahmedabad		
2.	Dr. Mehul V. Desai,	Government	9904089556	mvd.svnit@gmail.com
	Lecturer	Polytechnic for		
		Girls, Surat		

BoS Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Dr. A.S. Pandya, Principal	BPTI, Bhavnagar.	9426201171	aspandya22@rediffmail.com
2.	Dr. S N Sampat, HoD	L E College (Dip.), Morbi.	9033777389	snsampat@gmail.com
3.	Shri U V Buch, LEC	G`P A'bad	9825346922	uvbuchgmail.com